Show that (sqrt(3) + sqrt(75))^{2} = 108

The key here is to simplify the left hand side. There are two different approaches to take here, one slightly faster but both perfectly legitimate. First approach: Remember the formula (a + b)^{2} = a^{2} + 2ab + b^{2}. Then (sqrt(3) + sqrt(75))^{2} = 3 + 2sqrt(3)sqrt(75) + 75 = 78 + 2sqrt(225) = 78 + 2*15 = 108. Second approach: This approach is effectively the same as the first but in slightly more steps (which should be easier in general). We can write the left hand side out in full as (sqrt(3) + sqrt(75)) (sqrt(3) + sqrt(75)). From here, recall how we multiply these kinds of brackets together: (a + b)(c + d) = ac + ad + bc + bd. So we have sqrt(3)*sqrt(3) + sqrt(3)*sqrt(75) + sqrt(75)*sqrt(3) + sqrt(75)sqrt(75) = 3 + sqrt(225) + sqrt(225) + 75 = 78 + 215 = 108.

CB
Answered by Callum B. Maths tutor

6229 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you factorise the algebraic expression x^2 +5x+ 6?


A car costs £300. The price is then reduced by 20%. However, the shop increases the new price by 15%. Fadhila says, "20 - 15 = 5, so the original price of the car has been reduced 5%". Is she right? What is the final price of the car?


Calculate the interest on borrowing £40 for 3 years if the compound interest rate is 5% per year.


What does it mean to solve an equation for x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning