find dy/dx where y = a^x

First, we need to re-write it as e to the power something. The definition of log base e is that e^log(y) = y. We can put our expression into this equality too. So a^x = e^log(a^x), so we use log rules to bring the x down from a power to being at the front of the log, so a^x = e^(x*log(a)).

Now that we are differentiating something in the form e to the power something, we can use standard differentiation to carry it out. When y = e^bx, dy/dx = be^bx, and this is all we need now. So for us, y = e^( log(a) * x ). This means that dy/dx is log(a) * e^( log(a) * x ).

 

AS
Answered by Alastair S. Maths tutor

3001 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate ln(x)


A machine is used to manufacture custom spoilers for two types of sports car( Car A and Car B0. Each day, in a random order, n are produced for Car A and m for Car B. What is the probability that the m spoilers for Car B are produced consecutively?


Differentiate y=ln(x)+5x^2, and give the equation of the tangent at the point x=1


Use the substitution u=1+e^x to find the Integral of e^(3x) / (1 + e^x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences