find dy/dx where y = a^x

First, we need to re-write it as e to the power something. The definition of log base e is that e^log(y) = y. We can put our expression into this equality too. So a^x = e^log(a^x), so we use log rules to bring the x down from a power to being at the front of the log, so a^x = e^(x*log(a)).

Now that we are differentiating something in the form e to the power something, we can use standard differentiation to carry it out. When y = e^bx, dy/dx = be^bx, and this is all we need now. So for us, y = e^( log(a) * x ). This means that dy/dx is log(a) * e^( log(a) * x ).

 

AS
Answered by Alastair S. Maths tutor

3213 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).


Solve the differential equation dx/dt=-6*x , given when t=0 x=7.


Give the first and second derivative of the function f(x) = 5/x - 9x + 4


y=4x^3+6x+3 so find dy/dx and d^2y/dx^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning