Find the turning points of the curve y = x^3 +5x^2 -6x +4

y= x3 +5x2 -6+4

dy/dx = 3x2 +10-6

at turning points dy/dx = 0 therefore 

3x2 +10-6 = 0

This quadratic is factorisable. When factorised you get:

(3-2)(+4) = 0

therefore = 2/3 and -4 at the turning points

to find the y co-ordinates, substitue these values of x into the original equation of y= x^3 +5x^2 -6+4

y = (-4)3 +5(-4)2 -6(-4) +4 = 44

y = (2/3)3 +5(2/3)2 -6(2/3) +4 = 68/27

thw turning points of the curve are at the points (-4,44) and (2/3,68/27)

  

 

AB
Answered by Arshan B. Maths tutor

19166 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate xcos(x) with respect to x.


How do you divide polynomials? How do you do it with remainder?


Using the equation cos(a+b) = cos(a)cos(b) - sin(a)sin(b) or otherwise, show that cos(2x) = 2cos^2(x) - 1.


By forming and solving a quadratic equation, solve the equation 5*cosec(x) + cosec^2(x) = 2 - cot^2(x) in the interval 0<x<2*pi, giving the values of x in radians to three significant figures.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences