Prove that sin(x)+sin(y)=2sin((x+y)/2)cos((x-y)/2)

We know that 1. sin(a+b) = sin(a)cos(b)+sin(b)cos(a) and 2. sin(a-b) = sin(a)cos(b)-sin(b)cos(a) Add equations 1. and 2. sin(a+b)+sin(a-b) = 2sin(a)cos(b)+sin(b)cos(a)-sin(b)cos(a) = 2sin(a)cos(b) Let x=a+b and y=a-b, hence x+y=2a so a=(x+y)/2 and x-y=2b so b=(x-y)/2 Therefoe sin(x)+sin(y) = 2sin((x+y)/2)cos((x-y)/2)

AV
Answered by Anna V. Maths tutor

33655 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the exact answer to (1^3 + 2^3 + 3^3)^(0.5) ?


differentiate parametrically y=3t+4 and x=2t^2 +3t-5


Differentiate the equation 4x^5 + 2x^3 - x + 2


Solve (3x+6)/4 - (2x-6)/5 = (x+7)/8.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences