Prove that sin(x)+sin(y)=2sin((x+y)/2)cos((x-y)/2)

We know that 1. sin(a+b) = sin(a)cos(b)+sin(b)cos(a) and 2. sin(a-b) = sin(a)cos(b)-sin(b)cos(a) Add equations 1. and 2. sin(a+b)+sin(a-b) = 2sin(a)cos(b)+sin(b)cos(a)-sin(b)cos(a) = 2sin(a)cos(b) Let x=a+b and y=a-b, hence x+y=2a so a=(x+y)/2 and x-y=2b so b=(x-y)/2 Therefoe sin(x)+sin(y) = 2sin((x+y)/2)cos((x-y)/2)

AV
Answered by Anna V. Maths tutor

32922 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sine Rule


Find the exact solution of the equation in its simplest form: 3^x * e^4x = e^7.


Find the intersection point of the line 2y=x+3 with the ellipse y^2+2x^2=3


You have a five-litres jug, a three-litres jug, and unlimited supply of water. How would you come up with exactly four litres of water (with no measuring cup)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences