Prove that sin(x)+sin(y)=2sin((x+y)/2)cos((x-y)/2)

We know that 1. sin(a+b) = sin(a)cos(b)+sin(b)cos(a) and 2. sin(a-b) = sin(a)cos(b)-sin(b)cos(a) Add equations 1. and 2. sin(a+b)+sin(a-b) = 2sin(a)cos(b)+sin(b)cos(a)-sin(b)cos(a) = 2sin(a)cos(b) Let x=a+b and y=a-b, hence x+y=2a so a=(x+y)/2 and x-y=2b so b=(x-y)/2 Therefoe sin(x)+sin(y) = 2sin((x+y)/2)cos((x-y)/2)

AV
Answered by Anna V. Maths tutor

33434 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y^3 + 3y^2 + 5


What is integration?


A curve has equation y = (12x^1/2)-x^3/2


Solve the equation 3^(5x-2)=4^(6-x), and show that the solution can be written in the form log10(a)/log10(b).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences