What is a derivative?

The derivative of a function f(x) is a measure of how the function f changes as its variable x changes. You have already met an example of derivatives: the gradient, m, measuring the rate of change of f(x) and x.

Indeed, to find m, you start by considering two points x1 and x2. You find their difference, Delta x:

Delta x = x2 – x1.

Then, you find the value of the function f corresponding to the two points and take their difference, Delta f(x):

Delta f(x) = f(x2) – f(x1).

Finally, to find m, you compute the ratio of the two Deltas:

M = delta f(x) / delta x.

When looking for m, we consider finite distances between any two given points, in the sense that the difference between x1 and x2 is finite. On the other hand, a derivative considers infinitesimally small distances between any two given points. Indeed, when writing down a derivative, we swap the symbol Delta with d, obtaining df(x)/dx. Considering infinitesimally small distances makes the derivative an extremely precise tool for understanding the behaviour of a function.

MD
Answered by Marta D. Maths tutor

3561 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 9^(3x + 1) in the form 3^y , giving y in the form ax + b, where a and b are constants.


How to integrate 5x^2?


Integrate cos^2x + cosx + sin^2x + 3 with respect to x


if a^x= b^y = (ab)^(xy) prove that x+y =1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning