Given that y = 8x + 2x^-1, find the 2 values for x for which dy/dx = 0

First differentiate y with respect to x, which gives you dy/dx = 8 - 2x^-2. This needs to equal zero so equate to zero. 8-2x^-2 = 0. You can then bring the 2x^-2 to the other side giving 2x^-2=8. Dividing both sides by 2 gives x^-2 = 4. You can then flip both sides, giving x^2 = 1/4. Then square root both sides giving x = +/- 1/2. 

RB
Answered by Rosemary B. Maths tutor

4034 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the minimum value of the function, f(x) = x*exp(x)


What is the chain rule?


Differentiate with respect to x: (6x + 7)e^x


find the integral of ((3x-2)/(6x^2-8x+3)) with respect to x between x=2 and x=1. (hint use substitution u=denominator)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning