Using the trigonometric identity (sinx)^2 + (cosx)^2 = 1, show that (secx)^2 = (tanx)^2 + 1 is also a trigonometric identity.

We can divide by (cosx)^2 across the identity (sinx)^2 + (cosx)^2 = 1 (which can be derived from properties of the unit circle and a bit of Pythagoras’ theorem) to achieve

[(sinx)^2 / (cosx)^2] + [(cosx)^2 / (cosx)^2] = [1 / (cosx)^2]

Which leaves us with our desired identity

(tanx)^2 + 1 (secx)^2 = 1

AB
Answered by Annie B. Maths tutor

3378 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If, f(x) = 8x^3 + 1 / x^3 . Find f''(x).


Find the area bounded by the curve x^3-3x^2+2x and the x-axis between x=0 and x=1.


Differentiate F(x)=(25+v)/v


When do we use the quadratic formula, and when the completing the square method?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences