Using the trigonometric identity (sinx)^2 + (cosx)^2 = 1, show that (secx)^2 = (tanx)^2 + 1 is also a trigonometric identity.

We can divide by (cosx)^2 across the identity (sinx)^2 + (cosx)^2 = 1 (which can be derived from properties of the unit circle and a bit of Pythagoras’ theorem) to achieve

[(sinx)^2 / (cosx)^2] + [(cosx)^2 / (cosx)^2] = [1 / (cosx)^2]

Which leaves us with our desired identity

(tanx)^2 + 1 (secx)^2 = 1

AB
Answered by Annie B. Maths tutor

3518 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate x* (exp(x))??


Solve the following equation: x^(3) - 6x^(2) + 11x - 6 = 0


The curve C has equation y=(2x-3)^5, the point P lies on C and has coordinates (w, – 32), find (a) the value of w and (b) the equation of the tangent to C at the point P in the form y=mx+c , where m and c are constants.


A curve has the equation y=7-2x^5, find dy/dx of this curve


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning