Find the integral of (sinxcos^2x) dx

To find the Integral of (sinxcos^2x) dx, we must first use our knowledge of integration and differentiation of simple trigonometric functions. Such as Sinx and Cosx. Combined with our knowledge of integrating functions of functions such (1+x)^2 or (sinx)^2. By working backwards and thinking about what we would have to differentiate to get close to sinxcos^2x. We can determine that cos^3x would give us -3sinxcos^2x. Thus the integral of (sinxcos^2x) dx is -1/3cos^3x.

ZS
Answered by Zachary S. Maths tutor

14208 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

∫ 4/x^2+ 5x − 14 dx


Integrate 2x^2 + 4


Does the equation x^2 + 2x + 5 = 0 have any real roots?


Show that x^2 +6x+ 11 can be written as (x+p)^2 +q


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences