Find the indefinite integral of 3x - x^(3/2) dx

To find the integral of a function you must first incease the power of x by one then divide to coefficient by the new power. So, by increasing the powers first you get 3x^2 - x^(5/2) and then dividing by the new powers you get (3/2)x^2 - (2/5)x^(5/2) and make sure not to forget +c.

AJ
Answered by Alex J. Maths tutor

4940 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A car is moving on an inclined road with friction acting upon it. When it is moving up the road at a speed v the engine is working at power 3P and when it is moving down the road at v the engine is working at a power P. Find the value of P.


Differentiate the following: y = 3x^(1/3) + 2


A-level: solve 8cos^2(x)+6sin(x)-6=3 for 0<x<2(pi)


The line y=5-x intersects the curve y=x^2-3x+2 at the points P and Q. Find the (x,y) coordinates of P and Q.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning