Integrate 4x^3 - 3x + 6

When integrating an equation we can treat each variable individually. Lets start with 4x^3, when integrating, we raise the power (in this case 3) by +1 and divide the multiple (in this case 4) by the new raised power (in this case 3+1=4).
The integral of 4x^3 is therefore: (4/4)x^4 i.e. x^4
We follow the same process to integrate -3x: (-3/2)x^2 i.e. -1.5x^2
And 6: (6/1)x^1 i.e. 6x
We can now add these values up to reach our answer but remember integration is only unique up to a constant. Therefore we add a C to represent a constant. Our final answer is therefore: x^4 - 1.5x^2 + 6x + C

BP
Answered by Bradley P. Maths tutor

4044 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the derivative of ln(x) equal to 1/x.


Given the function y = x^5 + x^3/2 + x + 7 Express the following in their simplest forms: i) dy/dx ii) ∫ y dx


Differentiate f = ln(x^2 + 1) / (x ^ 2 + 1).


How do I find the stationary points on the curve y = f(x) = x^3+6x^2-36x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning