How do I write the function 3cosθ+4sinθ in the form Rsin(θ + α), where R and α are positive constants?

Split it up into steps:

Step 1: Use compound angle trigonometric formula to re-write Rsin(θ + α)

Since generally sin(θ ± φ) = sinθcosφ ± cosθsinφ

Rsin(θ + α) = R(sinθcosα + cosθsinα) = Rsinθcosα + Rcosθsinα

Step 2: Let Rsin(θ + α) = 3cosθ+4sinθ = Rsinθcosα + Rcosθsinα

We let them equal each other as we are trying to make them equivalent, just in different forms.

Step 3: Compare both sides of the equals (comparing coefficients of sinθ and cosθ)

Hence we can form two equations,

Comparing sinθ: 4=Rcosα

Comparing cosθ: 3=Rsinα

Step 3: Finding R (by squaring both sides of our equations)

16=R2cos2α and 9=R2sin2α

By adding these equations together we can show: 25=R2cos2α+R2sin2α

Hence, 25=R2(cos2α+sin2α)

We know that (cos2α+sin2α)=1, so 25=R2

Therefore R=5 (we take the positive root as R is positive)

Step 4: Finding α (Divide the equations to get in terms of tanα)

Since, 3=Rsinα and 4=Rcosα, we can divide the equations in such a way to get sinα/cosα

Hence, 3/4 = Rsinα/Rcosα

We can cancel down the R's in the fraction since R/R=1.

Since sinα/cosα = tanα, we can write the equation as:

tanα = 3/4

Therefore α=0.644rads (3 significant figures)

Step 5: Conclusion

As R=5 and α=0.644rads

Rsin(θ + α) = 5 sin(θ + 0.644)

Therefore 3cosθ+4sinθ = 5 sin(θ + 0.644)

OG
Answered by Oliver G. Maths tutor

11758 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent at x=1 for the curve y=(4x^2+1)^3


Find dy/dx of the equation y=x^2 ln⁡(2x^2+1).


Integrate 4x^3 + 6x^2 +4x + 3


Use integration by parts to find the integral of xsinx, with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning