Integrate xsin2x

Integrate by parts: integral = [uv] - ∫u'v dx (u'= derivative of u, v'= derivative of v)

u= x     u'= 1

v' = sin2x        v= -0.5cos2x

= -0.5xcosx  -  ∫-0.5cos2x dx

= -0.5xcosx + 0.25sin2x + c

JE
Answered by Julia E. Maths tutor

18790 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A line runs between point A(5,9) and B(11,1). Find the equation of the line. Point C lies on the line between A and B. The line with equation 2y=3x+12 also crosses through point C. Find the x coordinate of Point C.


Differentiate "sin(2x)"


Solve e^(2x) = 5e^(x) - 6, giving your answers in exact form


Find the binomial expansion of ((x^2) − 5)^3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences