Integrate xsin2x

Integrate by parts: integral = [uv] - ∫u'v dx (u'= derivative of u, v'= derivative of v)

u= x     u'= 1

v' = sin2x        v= -0.5cos2x

= -0.5xcosx  -  ∫-0.5cos2x dx

= -0.5xcosx + 0.25sin2x + c

JE
Answered by Julia E. Maths tutor

19072 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve with equation y=f(x) passes through the point (1, 4/3). Given that f'(x) = x^3 + 2*x^0.5 + 8, find f(x).


A circle, C, has an equation: x^2 + y^2 - 4x + 10y = 7 . Find the centre of the circle and its radius?


A curve has equation y = e^(3x-x^3) . Find the exact values of the coordinates of the stationary points of the curve and determine the nature of these stationary points.


Solve for -pi < x < pi: tanx = 4cotx + 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences