Prove: (1-cos(2A))/sin(2A) = tan(A)

Firstly we must lay out our double angle formulas which are required for this question: cos(2A) = 1-2sin^2(A) = 2cos^2(A)-1 sin(2A) = 2sin(A)cos(A) Working from LHS: (1-cos(2A))/sin(2A) Focusing on the denominator 1-cos(2A) = 1-(1-2sin^2(A)) = 2sin^2(A) Focusing on the numerator sin(2A) = 2sin(A)cos(A) Therefore, overall: (1-cos(2A))/sin(2A) = 2sin^2(A)/2sin(A)cos(A) = 2*sin(A)sin(A) / 2sin(A)*cos(A) = sin(A)/cos(A) = tan(A) AS REQUIRED 

RP
Answered by Rishi P. Maths tutor

19636 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the following between 0 and 1: (x + 2)^3 dx


Is the function f(x)=x^3+24x+3 an increasing or decreasing function?


Find the turning points of the curve y=2x^3 - 3x^2 - 14.


How would you find the minimum turning point of the function y = x^3 + 2x^2 - 4x + 10


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences