Prove: (1-cos(2A))/sin(2A) = tan(A)

Firstly we must lay out our double angle formulas which are required for this question: cos(2A) = 1-2sin^2(A) = 2cos^2(A)-1 sin(2A) = 2sin(A)cos(A) Working from LHS: (1-cos(2A))/sin(2A) Focusing on the denominator 1-cos(2A) = 1-(1-2sin^2(A)) = 2sin^2(A) Focusing on the numerator sin(2A) = 2sin(A)cos(A) Therefore, overall: (1-cos(2A))/sin(2A) = 2sin^2(A)/2sin(A)cos(A) = 2*sin(A)sin(A) / 2sin(A)*cos(A) = sin(A)/cos(A) = tan(A) AS REQUIRED 

RP
Answered by Rishi P. Maths tutor

20801 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A ball is kicked and has an instantaneous velocity of 19.6m/s at an angle of 30 degrees to the horizontal. A target lies flat on the ground in the direction the ball is kicked and lies at a distance of (98/5)*(3^1/2)m. Does the ball land on the target?


How to write an algebraic fraction in a given form e.g. (3+13x-6x^2)/(2x-3) as Ax + B + C/(2x-3) where A, B and C are natural numbers


simplify a^m x a^n


Find the roots of the equation y=x^2-8x+5 by completing the square.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning