How do you find stationary points of an equation, eg. y=x^2+3x+2

Stationary points of an equation are found where the gradient of the tangent at this point equals zero. A diagram can illustrate this. To find them differentiate the given equation (which gives the gradient) and set this to zero. eg. dy/dx = 2x+32x+3=0x=-3/2Plug this back into the equation of the line to find the y valuey=(-3/2)^2 + 3(-3/2) +2y= -1/4Stationary point is (-3/2, -1/4)To find the nature of this stationary point, find the second derivative, plug in your x value. If the value of the second derivative if positive, the point is a minimum, negative means a maximum.

EC
Answered by Ellie C. Maths tutor

3496 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has parametric equations -> x = 2cos(2t), y = 6sin(t). Find the gradient of the curve at t = π/3.


Find the integral of 1/(x-5) with respect to x


What is the intergral of 6.x^2 + 2/x^2 + 5 with respect to x?


Given y=2x^4-1+x^1/2, solve dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning