Consider a cone of vertical height H (in metres) and base radius R (in metres) which is full with water. The cone, at time t=0, starts to leak such that it loses water at a rate of k m^3 per second. Give an expression for the rate of change of H.

L = (H2+R2)1/2 V = (1/3)πR2(H2+R2)1/2

dV/dt = -k

dH/dt = dH/dV × dv/dt

dV/dH = (1/3)πR2H(H2+R2)1/2

Thus, dH/dt = -3k/(πR2H(H2+R2)1/2) ​​​​​​​​​​​

CE
Answered by Callum E. Maths tutor

3347 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y > 0, find ∫((3y - 4)/y(3y + 2)) dy (taken from the Edexcel C4 2016 paper)


Find the indefinite integral of f(x)=(1-x^2)/(1+x^2)


How do you find the angle between two vectors?


Represent in partial fraction form the expression x/x^2-3x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences