Consider a cone of vertical height H (in metres) and base radius R (in metres) which is full with water. The cone, at time t=0, starts to leak such that it loses water at a rate of k m^3 per second. Give an expression for the rate of change of H.

L = (H2+R2)1/2 V = (1/3)πR2(H2+R2)1/2

dV/dt = -k

dH/dt = dH/dV × dv/dt

dV/dH = (1/3)πR2H(H2+R2)1/2

Thus, dH/dt = -3k/(πR2H(H2+R2)1/2) ​​​​​​​​​​​

CE
Answered by Callum E. Maths tutor

3417 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the inequality |4x-3|<|2x+1|.


If y = 2^x, find dy/dx


Use calculus to find the set of values of x for which f(x) = x^3 - 9x is an increasing function.


Implicitly differentiate the following equation to find dy/dx in terms of x and y: 2x^2y + 2x + 4y – cos (piy) = 17


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences