Consider a cone of vertical height H (in metres) and base radius R (in metres) which is full with water. The cone, at time t=0, starts to leak such that it loses water at a rate of k m^3 per second. Give an expression for the rate of change of H.

L = (H2+R2)1/2 V = (1/3)πR2(H2+R2)1/2

dV/dt = -k

dH/dt = dH/dV × dv/dt

dV/dH = (1/3)πR2H(H2+R2)1/2

Thus, dH/dt = -3k/(πR2H(H2+R2)1/2) ​​​​​​​​​​​

CE
Answered by Callum E. Maths tutor

3286 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 6ln(x) + x^2 -8x + 3. Find the exact values of the stationary points.


How do I do integration by substitution?


If we have a vector 4x + 6y + z and another vector 3x +11y + 2z then what is the angle between the two?Give the answer in radians


Find the derivative for y=5x^3-2x^2+7x-15


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences