Prove or disprove the following statement: ‘No cube of an integer has 2 as its units digit.’

This is a very standard proof question for the C3 exam. The first thing that I would do when I see wordy proof statements like this is to make sure I understand what it means. Maybe writing out the statement more simply might help. So for this statement: n^3 never ends in 2. The second thing is just to try a few examples. With this statement, the example you should start with are nice and clear:
1^3=1 2^3=8 3^3=27 4^3=64 5^3=125 So far we haven't seen a number ending in two, and we haven't seen a pattern with the final digits yet, so we must continue.  6^3=216 7^3=343 8^3=512 So by finding a number where the statement is not true, we have found a counter-example so we have disproved it.

TD
Answered by Thomas D. Maths tutor

6570 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you do integration by parts?


∫6e^(2x+1) dx, find integral


Question 6 from Aqa 2017 June paper for C4, the vector question


Find the finite area enclosed between the curves y=x^2-5x+6 and y=4-x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning