Prove or disprove the following statement: ‘No cube of an integer has 2 as its units digit.’

This is a very standard proof question for the C3 exam. The first thing that I would do when I see wordy proof statements like this is to make sure I understand what it means. Maybe writing out the statement more simply might help. So for this statement: n^3 never ends in 2. The second thing is just to try a few examples. With this statement, the example you should start with are nice and clear:
1^3=1 2^3=8 3^3=27 4^3=64 5^3=125 So far we haven't seen a number ending in two, and we haven't seen a pattern with the final digits yet, so we must continue.  6^3=216 7^3=343 8^3=512 So by finding a number where the statement is not true, we have found a counter-example so we have disproved it.

TD
Answered by Thomas D. Maths tutor

6441 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate a fraction when x is on the numerator and denominator?


Find the stationary points of the function f(x) = x^3 - 27x and determine whether they are maxima or minima


How do you solve the integral of ln(x)


7x+5y-3z =16, 3x-5y+2z=-8, 5x+3y-7z=0. Solve for x,y and z.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning