What's the deal with Integration by Parts?


Integration by parts states that  ∫uv' dx = uv -  ∫u'v dx, where u & v are funcions of x and the notation u' means du/dx.

to do integration by parts given an integral  ∫f(x) dx, it involves writing f(x) as f(x) = u(x)v'(x), and then following the formula by determining u' and v.

The whole point of IBP is that  ∫u'v dx is hopefully easier to integrate than ∫uv' dx.

eg(1) take  ∫ xsin(x) dx. This is quite hard to integrate directly, so we use integration by parts. When choosing which is u(x) and v'(x), remember that you will have to integrate v' and differentiate u later. Often what happens is when you differentiate u, u'(x) turns out to be 1, which leaves you with a simple integration.

so take u(x) =x and v'(x)=sin(x)

=>u' =1,  v = -cos(x) (don't worry about the "+c", it's included at the end)

so following the formula: ∫xsin(x)dx = -xcos(x) - ∫-cos(x) = xcos(x) + ∫cos(x)dx = xcos(x) + sin(x) + c

this is the final answer to that particular question, and we see that integration by parts gives us another method of integtration


1) for ∫ f(x) dx, choose suitable functions u(x) and v'(x) such that f(x) = u(x) * v'(x). 

2) determine u'(x) and v(x) by differentiating and integrating respectively

3) use the formula ∫uv' dx = uv -  ∫u'v dx to find the answer!

DERIVATION: (not usually necessary for exam but interesting to see!)

differentiation by parts works like this, for, u & v as functions of x,

where u' = du/dx etc.

d/dx(uv) = (uv)' = uv' + u'v (proof omitted)

if we integrate both sides wrt x

=> uv =  ∫uv' dx +  ∫u'v dx

=>  ∫uv' dx = uv -  ∫u'v dx


Ben J. A Level Maths tutor, A Level Further Mathematics  tutor

2 years ago

Answered by Ben, an A Level Maths tutor with MyTutor

Still stuck? Get one-to-one help from a personally interviewed subject specialist


£36 /hr

Piyush S.

Degree: Electronics Engineering (Doctorate) - Imperial College London University

Subjects offered:Maths


“I am an experienced and passionate tutor for Maths and Science (Physics in particular). Throughout my higher education, I have been wondering about how Mathematics acts as a tool to model and simplify the complicated concepts of the P...”

£30 /hr

Venetia L.

Degree: General Engineering (Masters) - Durham University

Subjects offered:Maths, Further Mathematics

Further Mathematics

“I study General Engineering at the University of Durham. I have always enjoyed maths and sciences, so hope to help students who share my love for them too!”

£20 /hr

Rhianna C.

Degree: Mathematics (Bachelors) - Bristol University

Subjects offered:Maths, Chemistry+ 1 more


“I am currently studying Maths at University and absolutely love it! I can't wait to share my enthusiasm with you!”

About the author

PremiumBen J. A Level Maths tutor, A Level Further Mathematics  tutor
£24 /hr

Ben J.

Degree: Mathematics (Masters) - Durham University

Subjects offered:Maths, Further Mathematics

Further Mathematics

“Friendly tutor with perfect academic record happy to help you enjoy Maths and get the grades you need! :)”

You may also like...

Posts by Ben

how to find flight time/distance and greatest hight of projectiles?

What's the deal with Integration by Parts?

Other A Level Maths questions

Given that f(x) = (x^2 + 3)(5 - x), find f'(x).

Show that Sec2A - Tan2A = (CosA-SinA)/(CosA+SinA)

solve the differential equation dy/dx = 6xy^2 given that y = 1 when x = 2

f(x) = (4x + 1)/(x - 2). Find f'(x)

View A Level Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss