Solve the simultaneous equations: x^2 + 8x + y^2; x - y = 10.

Label the two equations.

x2 + 8x + y2 = 84 (1)
x - y = 10 (2)

Rearrange (2) to get y = x - 10 and substitute for y in (1) to get x2 + 8x + (x - 10)2 = 84. Expanding and collecting like terms gives 2x2 -12x + 16 = 0 (3). Dividing (3) through by 2 gives x2 - 6x + 8 = 0 (4). Factorising (4) gives (x - 2)(x - 4) = 0 so either x = 2 and y = -8 or x = 4 and y = -6.

LT
Answered by Lewis T. Maths tutor

4718 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the function; f(x)=1/((5-2x^3)^2)


How do I work out the equation of a tangent line to a curve?


What is the centre and radius of the circle x^2+y^2-6x+4y=-4


A curve with equation y = f(x) passes through the point (4,25). Given that f'(x) = (3/8)*x^2 - 10x^(-1/2) + 1, find f(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences