Solve the simultaneous equations: x^2 + 8x + y^2; x - y = 10.

Label the two equations.

x2 + 8x + y2 = 84 (1)
x - y = 10 (2)

Rearrange (2) to get y = x - 10 and substitute for y in (1) to get x2 + 8x + (x - 10)2 = 84. Expanding and collecting like terms gives 2x2 -12x + 16 = 0 (3). Dividing (3) through by 2 gives x2 - 6x + 8 = 0 (4). Factorising (4) gives (x - 2)(x - 4) = 0 so either x = 2 and y = -8 or x = 4 and y = -6.

LT
Answered by Lewis T. Maths tutor

5173 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to curve y=5x^2-2x+3 at the point x=0


Express the following in partial fractions: (1+2x^2)/(3x-2)(x-1)^2


If y = exp(x^2), find dy/dx


y(x) = x^2(1-x)e^-2x , find y'(x) in the form of g(x)e^-2x where g(x) is a cubic function to be found


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning