What is the gradient of the quadratic function y=3x²?

The gradient of a function with variable x is found by applying the differential operator to it. The differential operator is commonly written as d/dx. Hence the differential operator applied to the function y is written to be dy/dx. The differential operator, in the generic polynomial case takes the function that it’s ‘operating’ on and takes a power of a polynomial inside the function, multiplies the entire function by the value of the power, then the polynomials power is decreased by one. I.e. If y=xn, for n being a real value. Then dy/dx=nxn-1. For the equation given, If y=3x2 then by the differential operator, dy/dx=(3)(2)x2-1=6x = gradient of y for all x being a real value.

MC
Answered by Matthew C. Maths tutor

10106 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What's the integral of x^2 +3/x, with respect to x?


Solving 2tan(x) - 3sin(x) = 0 for -pi ≤ x < pi


FInd the equation of the line tangent to the graph g(x)=integral form 1 to x of cos(x*pi/3)/t at the point x=1


How do you find the normal to a curve at a given co-ordinate?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning