How do I express complicated logs as single logarithms?

The process of transforming a complicated log to a single logarithm depends on the question. However, there are some basic rules and methods that are commonly involved.

Here is an example:

Example

Express 2log3x – log3(x + 4) as a single logarithm

Step 1:

Use the power log rule. The coefficient of 2log3x becomes the power.

log3x2 - log3(x+4)

This makes it easier to compare the logs as you have the same coefficient.

Step 2:

Use the log rule that states subtracting two logs in the same base is the same as division. The subtraction outside can be turned into division inside.

log3x2/(x+4)

You can do this because both logs have the same base (3)

Tips:

  • Make sure the logs contain the same base

  • Revise the basic log rules so you can easily apply them

KL
Answered by Keeley L. Maths tutor

11115 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (3-5x)/(x+3)^2 in the form A/(x+3) + B/(x+3)^2


g(x) = x/(x+3) + 3(2x+1)/(x^2 +x - 6) a)Show that g(x) =(x+1)/(x-2), x>3 b)Find the range of g c)Find the exact value of a for which g(a)=g^(-1)(a).


The circle (x-3)^2 +(x-2)^2 = 20 has centre C. Write down the radius of the circle and the coordinates of C.


Use implicit differentiation to find the derivative of 2yx^2, with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning