Integral of sin^2(x) with respect to x

It is impossible to dirctly integrate sin^2(x) so we must transform it into something that can be integrated. Trigonometry can be used to do this. Recall the identity cos(2x) = cos^2(x) - sin^2(x) and cos^(x) + sin^2(x) = 1. These 2 indentities can be combined through a little bit of algebra to give; sin^2(x) = 0.5 -  0.5cos(2x). Now this is an expression which can be directly integrated! 

The integral of 0.5 - 0.5cos(2x)  is simply 0.5x -0.25sin(2x) 

OF
Answered by Orlando F. Maths tutor

13043 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area under the curve y = sin(2x) + cos(x) between 0 and pi/2


Find the area of the region, R, bounded by the curve y=x^(-2/3), the line x = 1 and the x axis . In addition, find the volume of revolution of this region when rotated 2 pi radians around the x axis.


A curve C has the equation x^3 +x^2 -10x +8. Find the points at which C crosses the x axis.


How do you solve trigonometric equations?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences