Integral of sin^2(x) with respect to x

It is impossible to dirctly integrate sin^2(x) so we must transform it into something that can be integrated. Trigonometry can be used to do this. Recall the identity cos(2x) = cos^2(x) - sin^2(x) and cos^(x) + sin^2(x) = 1. These 2 indentities can be combined through a little bit of algebra to give; sin^2(x) = 0.5 -  0.5cos(2x). Now this is an expression which can be directly integrated! 

The integral of 0.5 - 0.5cos(2x)  is simply 0.5x -0.25sin(2x) 

OF
Answered by Orlando F. Maths tutor

13680 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the function 1/sqrt(9-x^2) with respect to x


A curve with equation y=f(x) passes through the point (1, 4/3). Given that f'(x) = x^3 + 2*x^0.5 + 8, find f(x).


Find the gradient of y=x^2-6x-16 at the point where the curve crosses the x-axis


find dy/dx of x^1/2 + 4/(x^1/2) + 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning