A curve has the equation y = 4x^3 . Differentiate with respect to y.

y = 4x3 To differentiate you must find dy/dx. To calculate dy/dx, look at this example using just letters from algebra: y = axb dy/dx = (ab)x(b-1) As you can see, to calculate dy/dx you must multiply the number preceding x (in this example this number is represented by the letter: a) by the number that x is to the power of (which is in this case is represented by the letter: b). You then subtract 1 from the integer to give you a new integer (in this case represented by: b-1). Using this logic, we will go through the question in a couple of steps. Firstly, identify which numbers represent 'a' and 'b' in this question: y = 4x3 So, a = 4, and b=3. Putting these numbers into our formula (dy/dx = (ab)x(b-1) ) gives us: ab = 12 b - 1 = 2 Therefore, we can substitute these answers into our formula, giving us our final answer: dy/dx = 12x2

SH
Answered by Samuel H. Maths tutor

4804 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find an expression in terms of powers of cos(x) for cos(5x)


Given the equation 3x^2 + 4xy - y^2 + 12 = 0. Solve for dy/dx in terms of x and y.


Find the constant term in the expression (x^2-1/x)^9


Integrate the function y = 2x^2 + 3x + 8 with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning