A curve has the equation y = 4x^3 . Differentiate with respect to y.

y = 4x3 To differentiate you must find dy/dx. To calculate dy/dx, look at this example using just letters from algebra: y = axb dy/dx = (ab)x(b-1) As you can see, to calculate dy/dx you must multiply the number preceding x (in this example this number is represented by the letter: a) by the number that x is to the power of (which is in this case is represented by the letter: b). You then subtract 1 from the integer to give you a new integer (in this case represented by: b-1). Using this logic, we will go through the question in a couple of steps. Firstly, identify which numbers represent 'a' and 'b' in this question: y = 4x3 So, a = 4, and b=3. Putting these numbers into our formula (dy/dx = (ab)x(b-1) ) gives us: ab = 12 b - 1 = 2 Therefore, we can substitute these answers into our formula, giving us our final answer: dy/dx = 12x2

SH
Answered by Samuel H. Maths tutor

4323 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the nature of the turning points of the graph given by the equation x^4 +(8/3)*x^3 -2x^2 -8x +177 (6 marks)


solve 2cos^2(x) - cos(x) = 0 on the interval 0<=x < 180


Show that 2sin(2x)-3cos(2x)-3sin(x)+3=sin(x)(4cos(x)+6sin(x)-3)


Integrate the function f(x) = ax^2 + bx + c over the interval [0,1], where a, b and c are constants.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences