A curve has the equation y = 4x^3 . Differentiate with respect to y.

y = 4x3 To differentiate you must find dy/dx. To calculate dy/dx, look at this example using just letters from algebra: y = axb dy/dx = (ab)x(b-1) As you can see, to calculate dy/dx you must multiply the number preceding x (in this example this number is represented by the letter: a) by the number that x is to the power of (which is in this case is represented by the letter: b). You then subtract 1 from the integer to give you a new integer (in this case represented by: b-1). Using this logic, we will go through the question in a couple of steps. Firstly, identify which numbers represent 'a' and 'b' in this question: y = 4x3 So, a = 4, and b=3. Putting these numbers into our formula (dy/dx = (ab)x(b-1) ) gives us: ab = 12 b - 1 = 2 Therefore, we can substitute these answers into our formula, giving us our final answer: dy/dx = 12x2

SH
Answered by Samuel H. Maths tutor

4440 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the function f(x)=ax^2+bx+c, we are given that it has x-intercepts at (0,0) and (8,0) and a tangent with slope=16 at the point x=2. Find the value of a,b, and c.


Find the area enclosed between the curves y = f(x) and y = g(x)


How would I differentiate y=2(e^x)sin(5x) ?


Find, using calculus, the x coordinate of the turning point of the curve with equation y=e^3x cos 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning