Find f(x^(1/2)+4)dx (Where f is the integral sign)

The general form for an integrand if the integral is of the form f(x^n)dx is (1/(n+1)) * x^(n+1) +c This is applied to each term in the question, remembering the constant in the integrand:

So: f(6x+x^(1/2)+4)dx 

=(1/((1/2)+1))*x^((1/2)+1) + (1/(0+1))*x^(0+1) + c

note that 4=4x^0=4*1 as anything to the power of 0 is equal to one- x has an exponent of zero (n=0).

Simplifying terms:

f(6x+x^(1/2)+4)dx = (2/3)x^(3/2) + 4x + c

MA
Answered by Michael A. Maths tutor

3450 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of x and y for which dy/dx = 0 in y= x^3 - 4x^2 - 3x +2


Find the equation of the normal to the curve y=2x^3 at the point on the curve where x=2. Write in the form of ax+by=c.


A curve C has equation 2^x + y^2 = 2xy. How do I find dy/dx for the curve C?


Integrate 2x^5 - 1/4x^3 - 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning