Differentiate 2x^3+23x^2+3x+5 and find the values of x for which the function f(x) is at either at a maximum or minimum point. (Don't need to specify which is which)

f(x)=2x3+23x2+3x+5

f'(x)=6x2+46x+3

Maximum or minimum when f'(x)=0

6x2+46x+3=0

Using the Quadratic Formula: x=(-b+-squareroot(b2-4ac))/2a

x1=-0.0658

x2=-7.6

SK
Answered by Sanjana K. Maths tutor

4264 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find dy/dx when y=x^3 + sin2x


How do you differentiate y = 5 x^3 + 1/2 x^2 + 3x -4


A function is defined parametrically as x = 4 sin(3t), y = 2 cos(3t). Find and simplify d^2 y/dx^2 in terms of t and y.


Find the equation of the tangent line to the graph of y=2x^4-7x^3+x^2+3x when x=5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning