Differentiate sin(x^3) with respect to y

For this we must use the chain rule. We start by defining x3 as a new variable, u = x3 Can then rewrite the expression as y = sin(u) Chain rule tells us that dy/dx = (dy/du)(du/dx) We can calculate these individidually. dy/du = cos(u)  du/dx = 3x2 Finally we can then say, dy/dx = dy/du * du/dx = cos(u) * 3x2 = 3x2cos(x3)

LB
Answered by Lloyd B. Maths tutor

6790 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate using by parts twice : ∫e^(x)*(cos(x))dx


Find the integral of 4/(1-x^2) dx:


The curve with the equation: y=x^2 - 32sqrt(x) + 20 has a stationary point P. Find the coordinates of P.


A curve has an equation of y = 20x - x^2 - 2x^3, with one stationary point at P=-2. Find the other stationary point, find the d^2y/dx^2 to determine if point P is a maximum or minium.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning