Differentiate sin(x^3) with respect to y

For this we must use the chain rule. We start by defining x3 as a new variable, u = x3 Can then rewrite the expression as y = sin(u) Chain rule tells us that dy/dx = (dy/du)(du/dx) We can calculate these individidually. dy/du = cos(u)  du/dx = 3x2 Finally we can then say, dy/dx = dy/du * du/dx = cos(u) * 3x2 = 3x2cos(x3)

LB
Answered by Lloyd B. Maths tutor

6970 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A cuboid has a rectangular cross section where the length of the rectangle is equal to twice its width x cm. THe volume is 81 cm^3. a) show that the total length L cm of the cuboid is given by L=12x+162/x^2


A line L is parallel to y = 4x+5 and passes through the point (-1,6). Find the equation of the line L in the form y = ax+b.


Find the derivative with respect to x and the x-coordinate of the stationary point of: y=(4x^2+1)^5


Show that, for all a, b and c, a^log_b (c) = c^log_b (a).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning