Differentiate sin(x^3) with respect to y

For this we must use the chain rule. We start by defining x3 as a new variable, u = x3 Can then rewrite the expression as y = sin(u) Chain rule tells us that dy/dx = (dy/du)(du/dx) We can calculate these individidually. dy/du = cos(u)  du/dx = 3x2 Finally we can then say, dy/dx = dy/du * du/dx = cos(u) * 3x2 = 3x2cos(x3)

LB
Answered by Lloyd B. Maths tutor

6640 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x: F(x)=(x^2+1)^2


Explain what is meant by a critical path.


What is the first derivative of y=5z(1+2z2)? Is this a minimum, maximum or turning point?


Using the equation cos(a+b) = cos(a)cos(b) - sin(a)sin(b) or otherwise, show that cos(2x) = 2cos^2(x) - 1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning