Find the equation of the tangent of the curve y = (8x)/(x-8) at the point (0,0)

We will be using the quotient rule, although the product rule is also usable and can be run through if the student wishes. Firstly, define u = 8x, v = x-8 for simplicity. Then clearly u' = 8, v' = 1, and so by the quotient rule we get y' = -64/(x-8)2. As we wish to find the tangent at the origin, we need the gradient at the point so we evaluate y'(0) = -1. Finally, using the line equation gives us y-y1 = m(x-x1) ==> y-0 = -1(x-0) ==> y = -x is the tangent to the curve at the origin. 

TK
Answered by Timofey K. Maths tutor

3577 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = e^(3x-x^3) . Find the exact values of the coordinates of the stationary points of the curve and determine the nature of these stationary points.


Find the vertex coordinates of parabola y = 2x^2 - 4x + 1


What is the value of sin(theta), cos(theta), tan(theta) where theta = 0, 30, 45, 60, 90


Why do I need to add the + C when finding an indefinite integral?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning