Find the equation of the tangent of the curve y = (8x)/(x-8) at the point (0,0)

We will be using the quotient rule, although the product rule is also usable and can be run through if the student wishes. Firstly, define u = 8x, v = x-8 for simplicity. Then clearly u' = 8, v' = 1, and so by the quotient rule we get y' = -64/(x-8)2. As we wish to find the tangent at the origin, we need the gradient at the point so we evaluate y'(0) = -1. Finally, using the line equation gives us y-y1 = m(x-x1) ==> y-0 = -1(x-0) ==> y = -x is the tangent to the curve at the origin. 

TK
Answered by Timofey K. Maths tutor

3319 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I answer this question? Use factor theorem to show (x-2) is a factor of f(x) = 2x^3 -7x^2 +4x +4.


The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.


Integrate 3x*2 using limits of 3 and 2


Find INT{2,1}{x^4 + 3x^2 + 2}


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences