Integrate, with respect to x, xCos3x

Integration by parts:
u = x u' = 1v' = Cos3x v = (Sin3x)/3 + c
So, ∫xCos3x= (XSin3x)/3 - ∫(Sin3x)/3 dx= (XSin3x)/3 - 1/3( - (Cos3x)/3) + c = (XSin3x)/3 + (Cos3x)/9 + c

Answered by Maths tutor

4103 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The gradient of the curve at A is equal to the gradient of the curve at B. Given that point A has x coordinate 3, find the x coordinate of point B.


Evaluate the following : ∫ln(x) dx


Identify the stationary points of f(x)=3x^3+2x^2+4 (by finding the first and second derivative) and determine their nature.


Solve the equation 5^x = 8, giving your answer to 3 significant figures.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning