Using Discriminants to Find the Number of Roots of a Quadratic Curve

In general, we could apply the formulax=\frac{-b\pm\sqrt{b^2-4ac\ }}{2a}. to work out the solutions of a quadratic function ax2+bx+c=0. 

The b2-4ac part is called the discriminant and the value of a discriminant could allow us to know the number of real roots that a quadratic function has. In other words, how many times does a quadratic curve cross the horizontal x axis in a graph?<o:p></o:p>

If b2-4ac=0, then a quadratic function has one real root and the graph of the function would be a curve just touch but not cross the x axis. In other words, the x axis is a tangent at the touching point and the touching point is also the minimum or maximum point of the function.<o:p></o:p>

If b2-4ac>0, then there are two real roots for the quadratic function and the corresponding graph would be a quadratic curve crosses over x axis twice.<o:p></o:p>

If b2-4ac<0, then there is no real roots for the quadratic function and a quadratic curve does not intersect or touch the horizontal axis at all in the graph. We could say that all points lying on this particular curve are either below the x axis or above the x axis.<o:p></o:p>

AL
Answered by Angela L. Maths tutor

6316 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of x and y for which dy/dx = 0 in y= x^3 - 4x^2 - 3x +2


Solve $\color{orange}{a}x^2 - \color{blue}{b}x + \color{green}{c} = 0$


Use integration by parts to find the value of definite integral between 5 and 1 (3x/root(2x-1))dx


what does it mean if "b^2 - 4ac < 0" for a quadratic equation (eg y = a*x^2 + b*x + c)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning