Solve the two equations: Equation 1: 2a - 5b = 11 Equation 2: 3a + 2b = 7

Firstly, you should aim to eliminate one of the unknown values. As b is positive and negative in each equation, this would be a good value to eliminate. Both equations would have to be multiplied to cancel out one of the values. For example, if equation 1 is multiplied by 2 and eqution 2 is multiplied by 5 you get:

Equation 1: 4a-10b= 22         Equation 2: 15a+ 10b= 35

Then add the two new equations together to cancel out b and simplify, which leaves you with:

19a= 57 therefore   a= 3

Then substitute a with 3 in equation 1 or 2 to find out the value of b. For example, if substituted into equation 1 you get:

(2 x 3) -5b=11   therefore  b=-1 

IH
Answered by Ikraan H. Maths tutor

6023 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 3(3x - 2) = 5x + 10


x^2 - 10x + 33 ≡ (x - a)^2 + b. Work out the value of a and b.


Solve x^2-5x+6=0


Bhavin, Max and Imran share 6000 rupees in the ratios 2 : 3 : 7 Imran then gives 3/5 of his share of the money to Bhavin. What percentage of the 6000 rupees does Bhavin now have? Give your answer correct to the nearest whole number.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences