Find the equation of the tangent to the curve y = 3x^2(x+2)^6 at the point (-1,3), in the form y = mx+c

Curve: y = 3x2(x+2)6 Coordinate: (-1, 3)

This is typically a C3/4 level question because of the differentiation, but the rest of the question is possible with year 12 maths knowledge. The best way to tackle this is to find the gradient function of the curve by differentiating, this will give us the gradient of the curve at (-1,3), which is equal to the gradient of the tangent at (-1,3). We then use the equation y-y1=m(x-x1) (where  (x1,y1) = (-1,3) ) to find the equation of the tangent.

Differentiate using the product rule. dy/dx = vu' + uv'

u = 3x2,  v = (x+2)6, u' = 6x, v' = 6(x+2)5

dy/dx = ( (x+2)6 *6x ) +  ( 3x2 * 6(x+2)5) = 6x(x+2)6 + 18x2(x+2)5

When x = -1,

dy/dx = ((6 * -1)(-1 + 2)6) + ((18 * 1) * (-1 + 2)5) = -6 + 18 = 12

y - 3 = 12(x+1)

y = 12x+12+3

y = 12x + 15

BK
Answered by BUNEME K. Maths tutor

11429 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate using the chain rule?


Find the solutions of the equation: sin(x - 15degrees) = 0.5 between 0<= x <= 180


f(x)=ln(3x+1), x>0 and g(x)=d/dx(f(x)), x>0, find expressions for f^-1 and g


If the functions f and g are defined: f: x--> x/5 + 4 g : x--> 30x + 10. what is x, if fg(x) = x. ?? What would fgf(x) = x^2 be??


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences