Find the equation of the tangent to the curve y = 3x^2(x+2)^6 at the point (-1,3), in the form y = mx+c

Curve: y = 3x2(x+2)6 Coordinate: (-1, 3)

This is typically a C3/4 level question because of the differentiation, but the rest of the question is possible with year 12 maths knowledge. The best way to tackle this is to find the gradient function of the curve by differentiating, this will give us the gradient of the curve at (-1,3), which is equal to the gradient of the tangent at (-1,3). We then use the equation y-y1=m(x-x1) (where  (x1,y1) = (-1,3) ) to find the equation of the tangent.

Differentiate using the product rule. dy/dx = vu' + uv'

u = 3x2,  v = (x+2)6, u' = 6x, v' = 6(x+2)5

dy/dx = ( (x+2)6 *6x ) +  ( 3x2 * 6(x+2)5) = 6x(x+2)6 + 18x2(x+2)5

When x = -1,

dy/dx = ((6 * -1)(-1 + 2)6) + ((18 * 1) * (-1 + 2)5) = -6 + 18 = 12

y - 3 = 12(x+1)

y = 12x+12+3

y = 12x + 15

BK
Answered by BUNEME K. Maths tutor

11889 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the function y=4sqrt(x)


A circle with centre C has equation x^2 + y^2 + 2x + 6y - 40 = 0 . Express this equation in the form (x - a)^2 + (x - b)^2 = r^2. Find the co-ordinates of C and the radius of the circle.


Find the stationary points of the curve y=2*x^3-15*x^2+24*x+17. Determine whether these points are maximum or minimum.


Given that x = 4sin(2y + 6), Find dy/dx in terms of x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning