How come x^2 = 25 has 2 solutions but x=root(25) only has one? Aren't they the same thing?

(This is something that I didnt fully understand for quite a while at school.) So when we are solving x2=25, in order to get x "on it's own" we square root both sides. However the definition of root(x) is root(x) = |x| so once we square root our equation we get |x| = |5|, since 5>0 we see |5| = 5 so our equation becomes |x| = 5. From solving modulus equations we know the easiest way to do this is to consider two seperate cases, one case when x >=0 and a second when x<0. This leads to us getting 2 solutions, which are x = -5 or 5. For x=root(25) we dont have to square root both sides so we just end up with x = |5|, again since 5>0, |5| = 5 so x=5. So the second equation (in the queston) has one solution but the first equation has two.

DJ
Answered by Dylan J. Maths tutor

7935 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has equation y = (2 - x)(1 + x) + 3 . A line passes through the point (2, 3) and the point on C with x-coordinate 2 + h . Find the gradient of the line, giving your answer in its simplest form.


The equation kx^2 + 4x + (5 – k) = 0, where k is a constant, has 2 different real solutions for x. Show that k satisfies k^2-5k+4>0.


Why does d/dx (tan(x)) = sec^2(x)?


Find the gradient of the equation y=e^2x.ln(4x^2) when x=5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning