Find the derivative of f(x)=x^3 sin(x)

Find the derivative of f(x)=xsin(x).

To do this calculation we need to use the product rule of differentiation: if f(x)=u(x)v(x), then the derivative is f'(x)=u'(x)v(x)+u(x)v'(x). In our case, u(x)=xand v(x)=sin(x).

First we calculate the derivatives of u and v in the usual way:

u'(x)=3x2
v'(x)=cos(x)

Then we put together our answer using the product rule:

f'(x)= u'(x)v(x)+u(x)v'(x)
     = 3xsin(x) + xcos(x)
     = x2(3 sin(x) + x cos(x))

In the final step we simplified our answer by identifying the common factor x2. This step is not essential, but it is generally a good idea to simplify your answer as far as possible.

MM
Answered by Mairi M. Maths tutor

24251 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express as a single logarithm 2 loga 6 loga 3 [2 marks]


Why is the definite integral between negative limits of a function with positive values negative even though the area bound by the x-axis is positive? for example the integral of y=x^2 between x=-2 and x=-1


If, f(x) = 8x^3 + 1 / x^3 . Find f''(x).


if f(x) = 7x-1 and g(x) = 4/(x-2), solve fg(x) = x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning