ABC are points on a circle, centre O. AO=9cm, OC=9cm and AC=15cm. Find the angle ABC.

Diagrams would be used to help visualise the answer. To find the angle OAC, the cosine rule needs to be used: cosA = (b2 + c2 - a2)/2bc. Therefore, looking at the diagram, (152 + 92 - 92)/2x15x9 = cosA cosA= 5/6, cos-1(5/6) = 33.56 degrees (to 4sf). This is angle OAC. Since AOC is an isoceles triangle, angle OAC and angle OCA are equal, so angle OCA is also 33.56 degrees (to 4sf). Because all angles in a triangle add up to 180 degrees, the final angle AOC can be calculated: 180-(33.56+33.56) = 112.88 degrees. Using circle theorems: the angle at the centre is twice the angle at the circumference. Therefore, 112.88/2 = 56.44 degrees. So angle ABC = 56.44 degrees (to 4sf).

IP
Answered by Imogen P. Maths tutor

3575 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations to find the values of x and y: 3x + 5y = -4 and 10x - 4y = -34


How to find the equation of a line from a graph?


Solve the equation (2X + 3) / (X-4) - (2X - 8) / (2X + 1) = 1


Solve the following simultaneous equations 3x+y=11 and 2x+y=8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences