Show that the line y = x - 7 does not meet the circle (x + 2)^2 + y^2 = 33.

To find potential points of intersection between the line and the circle, we need to solve the equations simultaneously. So, we substitute y = x - 7 into the equation of the circle: (x + 2)2 + y2 = 33 (x + 2)2 + (x - 7)2 = 33 x2 + 4x + 4 + x2 - 14x + 49 = 33 (expand the brackets) 2x2 - 10x + 20 = 0 (collect like terms) x2 - 5x + 10 = 0 (divide each term by 2) Now, the discriminant b- 4ac = (-5)- 4 * 1 *10 = 25 - 40 = -15. As b- 4ac < 0, there is no solution to the quadratic equation. So, the line does not meet the circle.

AI
Answered by Anastasios I. Maths tutor

18134 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the inverse of a gradient -1/x?


Find the coefficient of x^4 in the expansion of: x(2x^2 - 3x + 1)(3x^2 + x - 4)


Find all the solutions of 2 cos 2x = 1 – 2 sinx in the interval 0 ≤ x ≤ 360°.


Given a function f(x)=3x^2+5x-1, find its derivative.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences