Find the location of the turning point of the following curve, y = x^2 + 6x - 7

Turning point is when dy/dx = 0

if y= x2 + 6x - 7

dy/dx = 2x + 6

at turning point: 2x + 6 = 0

therefore: 2x = - 6

x coordinate: x = - 3

substitute into y to find y coordinate: y = (-3)2 + 6(-3) -7

therefore: y = 9 -18 -7

y coordinate: y = -16

location of turning point: (-3,-16)  //

HM
Answered by Hugo M. Maths tutor

6299 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At time t = 0 a particle leaves the origin and moves along the x-axis. At time t seconds, the velocity of P is v m/s in the positive x direction, where v=4t^2–13t+2. How far does it travel between the times t1 and t2 at which it is at rest?


What is the equation of the curve that has gradient dy/dx=(4x-5) and passes through the point (3,7)?


Given that x = 4sin(2y + 6), Find dy/dx in terms of x


Given that f(x) = (x^2 + 3)(5 - x), find f'(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning