How to find the equation of a tangent to a curve at a specific point.

  • Google+ icon
  • LinkedIn icon
  • 1106 views

The first thing to remember is that the tangent to the curve at a given point has the same gradient as the curve at that point.

Let's consider the general case y=f(x) at a point c=(x1,y1).

Step 1:We have to differentiate to find dy/dx.

Step 2: Calculate dy/dx when x=x1. This is the gradient at the point c.

Step 3: Use the equation of a general straight line with gradient m at a point c 'y-y1=m(x-x1)', where m is the value of the gradient calculated in Step 2.

Here is an example. Find the equation of the tangent to the curve y=x^3-4x at the point (1,-3). 

In this example x1=1 and y1=-3

Step 1: dy/dx=3x^2-4

Step 2: When x=1, dy/dx =-1, so m=-1

Step 3: Use the equation y-y1=m(x-x1) to obtain y--3=-1(x-1)

We can then rearrange this to the nicer form of y=-x-2.

Rafe L. GCSE Maths tutor, A Level Maths tutor, A Level Further Mathem...

About the author

is an online A Level Maths tutor with MyTutor studying at Warwick University

Still stuck? Get one-to-one help from a personally interviewed subject specialist.

95% of our customers rate us

Browse tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok