Express 2 cos x – sin x in the form Rcos( x + a ), where R and a are constants, R > 0 and a is between 0 and 90 ° Give the exact value of R and give the value of to 2 decimal places.

2cosx - sinx = Rcos(x+a) = Rcos(x)cos(a)-Rsin(x)sin(a)

Implying

2cos(x)=Rcos(x)cos(a)

Rcosa = 2

Similarly: Rsin(a) = 1

Therefore tan(a) = 1/2

Meaning a=26.57 Degrees

R2(sin2a+cos2a)=5

Implying, given sin2a+cos2a=1, R= Root(5)

Answer 2cosx-sinx=(Root5)(cos[x+26.57])

TO
Answered by Thomas O. Maths tutor

30755 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the binomial expansion of (2x+6)^5 up to x^3 where x is decreasing.


The equation x^2+ kx + 8 = k has no real solutions for x. Show that k satisfies k^2 + 4k < 32.


Differentiate: 2(x^2+2)^3


f(x) = (4x + 1)/(x - 2) with x > 2. Find a value for 'x' such that f'(x) (first derivative of f(x) with respect to x) is equal to -1.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences