How do I find where the stationary points of a function are?

If you were to draw a graph of the function, a stationary point would be a point on the graph where the gradient is zero, i.e the graph has no vertical slope. For example consider the function f(x) = 2. This is a graph where every value of x simply takes the y value of 2, and thus is just the horizontal line y=2. This graph has zero gradient everywhere, and hence every point on the graph is a stationary point. 
In general, if we have a function y=f(x), we must differentiate it first in order to find the stationary points. Once we have differentiated, we have an expression of the form dy/dx=f'(x). The solutions to the equation dy/dx=0 are the x values of where the stationary points occur. We then subsitute these x values into the expression y=f(x) to find the corrresponding y values to each x value. This will give us the coordinates for each stationary point.
Example
Consider the function f(x)=x^3 -12x. We let y=f(x). We must now differentiate to get an expression of the form dy/dx = f'(x). Differentiating our function with respect to x we have that f'(x)= 3x^2 - 12. Hence our expression for dy/dx is dy/dx=3x^2 - 12. We must now solve the equation dy/dx=0 in order to find the x values of the stationary points. We have 3x^2 - 12 =0 as our equations. Dividing both sides by 3, we now have x^2 - 4=0, and factorising this expression using the 'Difference of Two Squares' method, we have that (x-2)(x+2)=0. Hence our two x value are 2 and -2. When x=2, f(x)= 3(2^2)-12(2)=-12. So one coordinate is (2,-12). When x=-2, f(x)=3((-2)^2) - 12(-2) = 36. So the other coordinate is (-2,36).
Hence by differentiating y=f(x), solving the equation dy/dx=0 and then substituting in the solutions of this equation into our expression f(x), we have found that the coordinates of the stationary points are (2,-12) and (-2,36)

LS
Answered by Laasya S. Maths tutor

13006 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of [ 2x^4 - (4/sqrt(x) ) + 3 ], giving each term in its simplest form


The Volume of a tin of radius r cm is given by V=pi*(40r-r^2-r^3). Find the positive value of r for which dV/dr=0 and find the value of V for this r.


The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c


A circle has equation x^2 + y^2 - 8x - 10y + 5 = 0, find its centre and radius


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences