Find dy/dx if y=(x^3)(e^2x)

Use product rule. Set u=x^3 and v=e^2x. Differentiate u and v. Then dy/dx = uv'+vu' = (3x^2)*(e^(2x))+(2x^3)(e^(2x)). This problem is best explained written on a whiteboard (it's difficult to give an explanation in prose without proper formatting).

JM
Answered by Joseph M. Maths tutor

6403 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider the unit hyperbola, whose equation is given by x^2 - y^2 = 1. We denote the origin, (0, 0) by O. Choose any point P on the curve, and label its reflection in the x axis P'. Show that the line OP and the tangent line to P' meet at a right angle.


A smooth 4g marble is held at rest on a smooth plane which is fixed at 30 degrees to a horizontal table. The marble is released from rest - what speed is the marble travelling at 5 seconds after being released? Let g = 9.8ms^2


[FP2] Solve: 3 cosh x - 4 sinh x = 7


Given that 4(cosec x)^2 - (cot x)^2 = k, express sec x in terms of k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning