ABC is an acute-angled triangle. BA=7cm and BC=8cm. The area of triangle ABC is 18 cm^2 . Work out the size of angle BAC. Give your answer correct to 3 significant figures. You must show all your working.

Draw the triangle ABC and fill in the information given i.e. lengths of BA and BC and identify the angle we are looking for i.e angle BAC Looking at the formulas given identify which one we can use. We have two sides and the area therefore the one we select is the Area of a Triangle i.e. Area=(1/2)(absinC). Substitute and rearrange to find angle ABC is equal to 40o Now we have two sides and an angle so we can use the Cosine Rule i.e. a2=b2+c2-2bccosA . Now substitute our values into that equation and take the positive square root to obtain AC is equal to 5.216cm Now we know we want to find the angle BAC so use the Sine Rule i.e. a/sinA=b/sinB. Substitute in the values and rearrange to obtain the the angle BAC is equal to 80.4to 3 significant figures. This question was taken from the June 2016 Edexcel GCSE Higher Mathematics paper.

AM
Answered by Anna M. Maths tutor

10616 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

i) Make y the subject of the expression x = ((a-y)/b))^1/2 ii) Simplify fully (2x^2 − 8)/(4x^2 − 8x)


ABC is an isosceles triangle such that AB = AC A has coordinates (4, 37) B and C lie on the line with equation 3y = 2x + 12 Find an equation of the line of symmetry of triangle ABC. Give your answer in the form px + qy = r where p, q and are integers (5


Finding Roots of Quadratic Equations


Factorize the following expression and solve for x: X^2 +7X +10=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences