Find the gradient of the curve (x^3)-4(y^2)=12xy at the point P(-8,8)

First of all differentiate the equation of the curve implicitly, giving:

3x2-8y(dy/dx)=12y+12x(dy/dx)

=> (dy/dx)(12x+8y)=3x2-12y

=> dy/dx=(3x2-12y)/(12x+8y)

As dy/dx is the gradient of the curve, if we insert x=-8 and y=8, we will have the gradient of the curve specific to the P location:

dy/dx=[3(-8)2-12(8)]/[12(-8)+8(8)]=-3

FG
Answered by Franco Guglielmo R. Maths tutor

3856 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the probability to obtain exactly 2 heads out of 3 tosses of a fair coin?


Solve the differential equation dy/dx = 6xy^2 given that y=1 when x=2.


How do I find the inverse of a function?


Complete the square for the following equation: 2x^2+6x-3=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences