Show that 2tan(th) / (1+tan^2(th)) = sin(2th), where th = theta

We have 2tan(th) / (1 + tan^2(th)) = sin(2th)

We know that tan(A) = sin(A) / cos(A), and 1 + tan^2(A) = sec^2(A)

Therefore => (2sin(th) / cos(th)) / sec^2(th)

=> 2sin(th)*cos^2(th) / cos(th)

=> 2sin(th) cos(th)

=> sin(2th) by definition of trigonometric identities 

IC
Answered by Ian C. Maths tutor

3615 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The first three terms of an arithmetic series are p, 5p – 8, and 3p + 8 respectively. (a) Show that p=4 (b) Find the value of the 50th term in the series.


Find the integral of y=6/(e^x+2) using calculus.


how to turn a fraction in the form of (x + a)/(x + b)^2 into partial fractions?


Find the stationary point of the function f(x) = x^2 +2x + 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences