Show that 2tan(th) / (1+tan^2(th)) = sin(2th), where th = theta

We have 2tan(th) / (1 + tan^2(th)) = sin(2th)

We know that tan(A) = sin(A) / cos(A), and 1 + tan^2(A) = sec^2(A)

Therefore => (2sin(th) / cos(th)) / sec^2(th)

=> 2sin(th)*cos^2(th) / cos(th)

=> 2sin(th) cos(th)

=> sin(2th) by definition of trigonometric identities 

IC
Answered by Ian C. Maths tutor

3884 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 2Cos(a) - Sin(a) in the form RCos(a+b) Give the exact value of R and the value of b in degrees to 2 d.p.


If I have the equation of a curve, how do I find its stationary points?


A small stone is projected verically upwards from a point O with a speed of 19.6ms^-1. Modeeling the stone as a particle moving freely under gravity find the time for which the stone is more than 14.6m above O


Given that y = 4x^5 - 5/(x^2) , x=/=0 , find a)dy/dx b)indefinite integral of y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning