In this question, take 'log' to mean 'log base 5'. Solve the equation log(x^2-5)-log(x) = 2*log(2)

Note that you can not take a positive base log of a negative number.  log5(x2-5) - log5(x) = 2log5(2) => log5((x2-5)/x) = log5(4) => (x2-5)/x = 4 => x2- 4x - 5 = 0 => x = -1 or 5 Go back and check original equation. x cannot be -1 since you cannot take the (positive base) log of a negative number, so x has to be 5.

ML
Answered by Milan L. Maths tutor

3294 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the equation 3x^2 + 4xy - y^2 + 12 = 0. Solve for dy/dx in terms of x and y.


Let f(x) = 3x^4 - 8x^3 - 3. Find the x- values of the stationary points of this function.


x = 1 is a solution for the curve y = x^3-6x^2+11x-6, find the other solutions and sketch the curve, showing the location of any stationary points.


f(x)=x^3 + x^2 -10x +8 show that (x-1) is a factor of f(x), Factorise f(x) fully , sketch the graph of f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning