In this question, take 'log' to mean 'log base 5'. Solve the equation log(x^2-5)-log(x) = 2*log(2)

Note that you can not take a positive base log of a negative number.  log5(x2-5) - log5(x) = 2log5(2) => log5((x2-5)/x) = log5(4) => (x2-5)/x = 4 => x2- 4x - 5 = 0 => x = -1 or 5 Go back and check original equation. x cannot be -1 since you cannot take the (positive base) log of a negative number, so x has to be 5.

ML
Answered by Milan L. Maths tutor

3185 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation 5x sqaured + px + q , where p and q are constants, has roots α and α + 4. (a) Show that p squared = 20q +400.


Express: (x^2 + 5x - 14) / (2x^2 - 4x) as a fraction in it's simplest form.


A cricket player is capable of throwing a ball at velocity v. Neglecting air resistance, what angle from the horizontal should they throw at to achieve maximum distance before contact with the ground? How far is that distance?


Show that Sec2A - Tan2A = (CosA-SinA)/(CosA+SinA)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences