Why does differentiation give us the results that it does?

A quick analysis here is based on the fact that y=(x2). A big change is worked out between two points. The gradient between x=1 and x=2 is equal to 3. BUT we know the gradient is constantly changing so this is an average over a large change. This is not sufficient to model changes over the whole curve. What we need to do is approximate in a space where the curve matches our quick "gradient = change in y over change in x" model as closely as possible. This is easy. If we zoom in on a curve enough, it will begin to look like a straight line. Don't believe me? The earth is curved if seen from space but if you zoom closely enough it appears flat. so instead we`re going to look at the tiniest change in x, from x to (x+h), where h is tiny. Then if: y = x2, then gradient = ((x+h)2-x2) / ((x+h)-x) = (x2 +2xh +h2 -x^2) / h = (2xh+h2) / h = h(2x+h) / h = (2x+h) Now all we do is reduce the size of h until it reaches 0. So over no change in x value whatsoever. If y=x2 then the gradient dy/dx=2x. We can explore this with other examples!

AA
Answered by Alexander A. Maths tutor

3705 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is 2 + 2 not equal to 12?


g(x) = x/(x+3) + 3(2x+1)/(x^2 +x - 6) a)Show that g(x) =(x+1)/(x-2), x>3 b)Find the range of g c)Find the exact value of a for which g(a)=g^(-1)(a).


I'm trying to integrate f(x)=sin(x) between 0 and 2 pi to find the area between the graph and the axis but I keep getting 0, why?


The equation of a circle is x^2+y^2-6x-4y+4=0. i) Find the radius and centre of the circle. ii) Find the coordinates of the points of intersection with the line y=x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning