Why does differentiation give us the results that it does?

A quick analysis here is based on the fact that y=(x2). A big change is worked out between two points. The gradient between x=1 and x=2 is equal to 3. BUT we know the gradient is constantly changing so this is an average over a large change. This is not sufficient to model changes over the whole curve. What we need to do is approximate in a space where the curve matches our quick "gradient = change in y over change in x" model as closely as possible. This is easy. If we zoom in on a curve enough, it will begin to look like a straight line. Don't believe me? The earth is curved if seen from space but if you zoom closely enough it appears flat. so instead we`re going to look at the tiniest change in x, from x to (x+h), where h is tiny. Then if: y = x2, then gradient = ((x+h)2-x2) / ((x+h)-x) = (x2 +2xh +h2 -x^2) / h = (2xh+h2) / h = h(2x+h) / h = (2x+h) Now all we do is reduce the size of h until it reaches 0. So over no change in x value whatsoever. If y=x2 then the gradient dy/dx=2x. We can explore this with other examples!

AA
Answered by Alexander A. Maths tutor

3565 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of A between and including 0 and 360 degrees for tan(2A) = 3tan(A)


How do I use the chain rule for differentiation?


When using the addition rule in probability, why must we subtract the "intersection" to find the "union" with the Addition Rule?


(a) Use integration by parts to find ∫ x sin(3x) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences