How do I use the chain rule for differentiation?

Let’s say we’re given the equation y=(2x-6)^4we would know how to differentiate x^4, therefore we can take the substitution u=2x-6 to give us the equation y=u^4we then differentiate this equation (dy/du) to get 4u^3
However, we need dy/dx , and so we take the fact that dy/dx = (dy/du) x (du/dx)u=2x-6, therefore du/dx = 2And so dy/dx = 2 x 4u^3 = 8u^3

NA
Answered by Natasha A. Maths tutor

3584 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By expressing cos(2x) in terms of cos(x) find the exact value of the integral of cos(2x)/cos^2(x) between the bounds pi/4 and pi/3.


How do I deal with parametric equations? x = 4 cos ( t + pi/6), y = 2 sin t, Show that x + y = 2sqrt(3) cos t.


How would I differentiate y=2(e^x)sin(5x) ?


find dy/dx when y=x^3 + sin2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning