Find the equation of the tangent to the unit circle when x=sqrt(3)/2 (in the first quadrant)

Unit circle: x2 + y2 = 1 when x = sqrt(3)/2:  y2 = 1 - (sqrt(3)/2)2  y2 = 1 - 3/4  y2 = 1/4  y = 1/2 or -1/2 (first quadrant, so y is positive, i.e. y = 1/2) find gradient at (sqrt(3)/2, 1/2):  x2 + y2 = 1  2x + 2y dy/dx = 0  dy/dx = -2x/2y  dy/dx = -x/y Substitute x= sqrt(3)/2, y = 1/2  dy/dx = -sqrt(3) Find equation of line:  y - y1 = m(x - x1)  y - 1/2 = -sqrt(3)(x-sqrt(3)/2)  y = -sqrt(3)x + 3/2 + 1/2  y = -sqrt(3)x + 2

KJ
Answered by Kiran J. Maths tutor

3903 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the x co-ordinate of stationary point of the graph y=5x^3 +3x


Time, T, is measured in tenths of a second with respect to distance x, is given by T(x)= 5(36+(x^2))^(1/2)+4(20-x). Find the value of x which minimises the time taken, hence calculate the minimum time.


Find all solutions to the trig equation 2sin(x)^2 + 3sin(x) - 2 = 0 in the range 0 <= x <= 360 degrees


A curve has equation 2(x^2)+3x+10. What is the gradient of the curve at x=3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning