Let f(x) = 2x^3 + x^2 - 5x + c. Given that f(1) = 0 find the values of c.

In order to solve this question we simply must substitute x=1 into f(x).

If we carry out this substitution we see that

f(1) = 2(1^3) + (1^3) -5(1) + c = 2(1) + (1) -5(1) + c = 2 + 1  - 5 + c = 3 - 5 + c = c - 2.

We also know from the question provided that f(1) = 0. We can therefore match this condition with the substitution that we have just made which allows us to make the following statement. f(1) = c - 2 = 0.

We can then rearrange this equation in order to get an expression for c by adding 2 to both sides, therefore c = 2.

CL
Answered by Calum L. Maths tutor

3516 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Proof by Induction - "What's the point if we already know the answer?"


Consider the function y = x.sin(x); differentiate the function with respect to x


Write down the coordinates of the centre and the radius of the circle with equation x^2+y^2-4x-8y+11=0


Differentiate x^3(sinx) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning