If h(x) = 2xsin(2x), find h'(x).

Differentiate using product rule as expression consist of two functions.Product Rule: d(f(x)g(x))/dx = g(x).f'(x) + f(x).g'(x)Chain Rule: d(f(g(x)))/dx = g'(x) . f'(g(x))
Let: f(x) = 2x f'(x) = 2 - simple differentiation g(x) = sin(2x) g'(x) = 2cos(2x) - chain rule as function is composite
Therefore: h'(x) = sin(2x).2 + 2x.2cos(2x)
Final Answer: h'(x) = 2sin(2x) + 2xcos(2x)

MS
Answered by Meer S. Maths tutor

3902 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of y such that log2(11y-3)-log2(3)-2log2(​y) = 1


Sketch the graphs of y = f(x), y = g(x) and find the point(s) where f and g intersect.


Find the stable points of the following function, determine wether or not they are maxima or minima. y= 5x^3 +9x^2 +3x +2


Integral between 0 and pi/2 of cos(x)sin^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning