Let f(x) = 2x^3 + x^2 - 5x + c. Given that f(1) = 0 find the values of c.

In order to solve this question we simply must substitute x=1 into f(x).

If we carry out this substitution we see that

f(1) = 2(1^3) + (1^3) -5(1) + c = 2(1) + (1) -5(1) + c = 2 + 1  - 5 + c = 3 - 5 + c = c - 2.

We also know from the question provided that f(1) = 0. We can therefore match this condition with the substitution that we have just made which allows us to make the following statement. f(1) = c - 2 = 0.

We can then rearrange this equation in order to get an expression for c by adding 2 to both sides, therefore c = 2.

CL
Answered by Calum L. Maths tutor

3855 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the Binomial Expansion of (1-5x)^4.


Find the values of x, where 0 < x < 360, such that x solves the equation: 8(tan[x])^2 – 5(sec[x])^2 = 7 + 4sec[x]


Given y=rootx + 4/rootx = 4, find the value of dy/dx when x=8, writing your answer in the form aroot2, where a is a rational number.


Integrate y=(x^2)cos(x) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning