The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.

The main piece of information this question gives us is that the two lines do not cross or touch. From this we can immediately see that we will need to use the discriminant of the quadratic formula b2 - 4ac. To start with treat the curves as simultaneous equations and bring all terms to one side, 2px2-6px-3x+4p+7=0. Now group the terms together to form a quadratic equation you will recognise. E.g. x2(2p)+x(-6p-3)+(4p+7)=0. As the lines don't cross we know there will be no real roots to this equation so b2-4ac < 0.

By plugging the constants into this equation we get (-6p-3)2-4(2p)(4p+7)< 0 and this simplifies to 4p^2  – 20p + 9 < 0 as required.

MW
Answered by Molly W. Maths tutor

25432 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y=x^2 + (3k - 4)x + 13 and a line has equation y = 2x + k, where k is constant. Show that the x-coordinate of any point of intersection of the line and curve satisfies the equation: x^2 + 3(k - 2)x + 13 - k = 0


How do you differentiate a^x?


A cubic curve has equation y x3 3x2 1. (i) Use calculus to find the coordinates of the turning points on this curve. Determine the nature of these turning points.


What is a confidence interval?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences